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Abstract

Large artificial intelligence (AI) models have garnered sig-
nificant attention for their remarkable, often “superhuman”,
performance on standardized benchmarks. However, when
these models are deployed in high-stakes verticals such as
healthcare, education, and law, they often reveal notable lim-
itations. For instance, they exhibit brittleness to minor vari-
ations in input data, present contextually uninformed deci-
sions in critical settings, and undermine user trust by con-
fidently producing or reproducing inaccuracies. These chal-
lenges in applying large models necessitate cross-disciplinary
innovations to align the models’ capabilities with the needs of
real-world applications. We introduce a framework that ad-
dresses this gap through a layer-wise abstraction of innova-
tions aimed at meeting users’ requirements with large models.
Through multiple case studies, we illustrate how researchers
and practitioners across various fields can operationalize this
framework. Beyond modularizing the pipeline of transform-
ing large models into useful “vertical systems”, we also high-
light the dynamism that exists within different layers of the
framework. Finally, we discuss how our framework can guide
researchers and practitioners to (i) optimally situate their in-
novations (e.g., when vertical-specific insights can empower
broadly impactful vertical-agnostic innovations), (ii) uncover
overlooked opportunities (e.g., spotting recurring problems
across verticals to develop practically useful foundation mod-
els instead of chasing benchmarks), and (iii) facilitate cross-
disciplinary communication of critical challenges (e.g., en-
abling a shared vocabulary for AI developers, domain ex-
perts, and human-computer interaction scholars).

Introduction
Large artificial intelligence (AI) models have long served as
powerful tools for advancing domain-specific research and
development. Early examples include the adaptation of lan-
guage embeddings (like word2vec (Mikolov et al. 2013)) for
generating disease taxonomies (Ghosh et al. 2016), as well
as the use of YOLO-based image models (Redmon 2016)
for conducting animal population censuses (Parham et al.
2017). More recently, large models such as GPT-4o (Hurst
et al. 2024) and SAM (Kirillov et al. 2023) have demon-
strated more advanced capabilities, catalyzing further inno-
vations in domains as varied as AI tutoring (Lin, Huang, and
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Lu 2023) and digital pathology (Deng et al. 2023), all the
way to software development (Barenkamp, Rebstadt, and
Thomas 2020). The success of these models has been pro-
pelled by the increasing scale of their architectures—rising
from a few million parameters in 2013, to hundreds of mil-
lions in 2018, and now surpassing a trillion parameters in the
most recent deployments (Elmeleegy et al. 2024)—as well
as by the sheer volume of data used for their training (Bahri
et al. 2024). Many widely used benchmarks, both general-
purpose and domain-specific, have reached saturation or are
rapidly approaching it (Chollet 2024; Phan et al. 2025). At
the same time, frameworks built around these large models
(such as Application Programming Interfaces; APIs) have
lowered barriers to entry (Schillaci 2024), spurring a surge
in applications and attracting researchers and practitioners
from a broad range of disciplines.

Despite these successes, a decade of adapting large mod-
els in diverse verticals has highlighted persistent challenges.
For example, research teams have discovered that BERT
and CLIP-based models can be brittle to small input vari-
ations (Verma et al. 2022b; Ramshetty, Verma, and Kumar
2023), large language models (LLMs) often exhibit sensi-
tivity to prompt formatting (Sclar et al. 2024), and perfor-
mance of large models can diminish in highly specialized
settings (Deng et al. 2023; Chandra et al. 2024). Moreover,
AI systems sometimes struggle to effectively support diverse
user groups, such as users with a lower Need For Cognition
(Buçinca, Malaya, and Gajos 2021). These challenges, taken
together, pose bottlenecks in the vertical-adoption of the
large models. The process of adapting large models to ver-
ticals demands coordinated efforts from stakeholders across
varied disciplines and continues to be an active area of re-
search. Existing frameworks provide good starting points to
address some of these problems at a more granular level—
either focusing on one component of developing AI sys-
tems or a specific vertical. For instance, Ehsan et al. (2023)
present a framework to bridge the gap between social and
technical aspects of developing explainable AI systems. On
the other hand, focusing on a specific vertical, Trotsyuk et al.
(2024) present a framework to address potential misuse of
AI in biomedical research. There is still an unmet need for a
more comprehensive framework comprising various compo-
nents required for vertical adoption of large models and has
broad applicability towards generalizing to many verticals.



For instance, if a team were to develop an AI system to
help tutor high-school children or if a different team in-
tended to build AI that aids in the provision of psychiatric
healthcare, what are the components that exist in adopting
large AI models for these verticals? Which of these com-
ponents would pose challenges and would need innovations
from the team? On the other hand, which of these compo-
nents could be addressed using existing solutions? We posit
that the vertical adoption of large models can be made man-
ageable and modular with a structured framework that sys-
tematically addresses the cross-disciplinary complexities. To
this end, we propose a framework designed to guide both
researchers and developers in optimizing large-model devel-
opment and deployment by situating their innovations, op-
portunities, and challenges within a clearly defined structure.

Our proposed framework consists of 4 layers (see Fig-
ure 1), (i) starting with large AI models at the bottom, (ii)
vertical-agnostic properties, (iii) vertical adaptation, and
(iv) finally, vertical-user intermediaries. The 4 layers rep-
resent step-wise modular abstractions involved in develop-
ing systems with large models that deliver practical value to
their intended users. Drawing on case studies from multiple
verticals, we discuss how to situate innovations, challenges,
and opportunities within each layer of this framework. We
consider innovations as advances in algorithms, metrics, or
interface designs that resolve identified pain-points; chal-
lenges as specific obstacles that hinder vertical adoption of
large AI models; and opportunities as recurring unmet needs
that signal room for high-leverage solutions. We use the term
situating to indicate anchoring the contributions in one of the
four layers of the framework. The overall aim of the situat-
ing contributions within the framework is to ensure that the
holistic adoption of large AI models across various verticals
remains effective.

Beyond describing the framework and its layers, we also
highlight the inherent dynamism among these layers (i.e.,
how they interact with and influence one another over time).
Finally, drawing on observed trends, we present actionable
recommendations that benefit researchers and developers
across various verticals and disciplines. For instance, we dis-
cuss whether aspects like robustness and privacy are better
addressed as vertical-agnostic properties or as a vertical-
specific concerns, how scoping feedback from many verti-
cals and intermediary problems can lead to more effective
development of newer large models, when domain-specific
experts can borrow modeling and interfacing techniques
from others while innovating on the domain-specific data
curation and evaluation methods, and how interfacing AI
systems with users remains ripe with opportunities. Collec-
tively, we believe that adopting our framework will (a) guide
optimally placed innovations, (b) highlight potential oppor-
tunities, and (c) enable cross-disciplinary dialogue.

Who can benefit from the framework? The framework is
useful for interdisciplinary teams who want to adopt large
AI models in their respective verticals, and for researchers
who hope to position their work within a broad ecosystem
for identification of cross-layer connections and translation
of knowledge across contexts. For teams focused on a single

vertical, the framework decomposes the adoption pipeline
into modular components. Across multiple verticals, it pro-
vides a holistic view of the broader ecosystem that (a) fos-
ters cross-vertical exchange of innovations, opportunities,
and challenges (i.e., what can teams in healthcare learn from
teams in education) as well as (b) funnels feedback from
many verticals to improve the next iteration of large artifi-
cial intelligence models.

A framework for advancing vertical systems
with AI models

We developed our framework by building consensus among
a group of experts with experience in creating and applying
AI models across verticals such as well-being, web safety,
and enterprise software. They brought expertise in artifi-
cial intelligence, human-computer interaction, social sci-
ence, and healthcare, along with practical experience col-
laborating with leading industrial deployment teams, clini-
cians, non-profits, and non-governmental organizations. The
group members engaged in reflective discussions, drawing
on practical insights from their prior experiences deploying
user-facing applications with large AI models. The identified
recurring pain points were distilled into modular themes/lay-
ers that start with the underlying large models and end with
users’ needs. The group then discussed case studies and it-
eratively adapted the framework. The discussions also led to
formulation of actionable recommendations for future work
that aims to adopt large AI models in different verticals.

The framework is depicted in Figure 1 and described
below, progressing from bottom to top, where each layer
addresses specific functional aspects to achieve vertical-
specific utility with large models.

1. Large AI models: These are large-scale (in terms of train-
ing dataset size and number of parameters) AI models, more
recently dubbed foundation models (Bommasani et al. 2021)
that power diverse applications across verticals. These in-
clude modality-specific models (e.g., language-only, vision-
only) and multimodal models capable of handling multi-
ple input modalities. Their functional utility lies in the gen-
eral off-the-shelf capabilities they provide (e.g., natural lan-
guage understanding, image-text alignment) and adaptabil-
ity to new verticals through techniques such as fine-tuning,
prompting, or in-context learning.

2. Vertical-agnostic properties: Large models might need
general scaffolding around properties like robustness, in-
terpretability, efficiency, and privacy, before they are use-
ful as vertical-specific systems—such problems are consid-
ered vertical-agnostic properties. While improvements along
these aspects generally benefit many verticals, nonetheless,
some of these aspects may also require vertical-specific con-
siderations.

3. Vertical adaptation: Designed for delivering specific
value within verticals such as healthcare, web safety, and
education, vertical-specific adaptations involve integrating
large models’ capabilities with vertical-specific data, mod-
eling, evaluation, and interfacing the capabilities with end-
users of the vertical.



4. Vertical-user intermediaries: These address vertical-
agnostic challenges in interfacing systems built with large
models with the end-users, focusing on aspects like trust
calibration, feedback loops, and dynamic interfaces. While
some interfacing challenges could be vertical-specific, oth-
ers are broadly applicable challenges.

The following section presents case-studies that apply this
framework to two verticals — healthcare and education.

Applying the framework: case studies
As we describe the innovations, opportunities, and chal-
lenges that exist in the vertical adoption of large models
and situate them in our framework, two questions guide
our efforts: “Who are we trying to help?” and “What do
they care about?” These considerations gain prominence at
higher levels—where user impact is tangible—but inform
decisions throughout every layer of the framework. Table 1
depicts some of the example questions within different lay-
ers of the framework. These example problems show that
each vertical has different data, modeling, and evaluation
needs, yet they share cross-cutting challenges that exist be-
tween large AI models and vertical systems as well as be-
tween vertical systems and users.
Large AI models: The architectural scale and the pre-
training dataset size have resulted in remarkable off-the-
shelf capabilities of the large AI models, measured by their
success on continually evolving benchmarks(Chollet 2024;
Liang et al. 022). While there has been a push towards
even larger models trained on huge datasets, equipping them
with the ability to support inputs in multiple modalities
— language, vision, audio, and in some cases even sensor
data (Moon et al. 2024), has the potential to unlock new ap-
plications across many verticals. For instance, multimodal
models could, in principle, process radiology scans along
with diagnostic questions (Bhayana 2024), raw electrocar-
diogram (ECG) signals for health data analytics (Quer and
Topol 2024), provide voice-based tutoring (Katsarou et al.
2023), and write and review lengthy codebases (Bairi et al.
2024). While the development of these AI models offers an
affordance for multimodal input, questions remain around
how well the multimodal LLMs can reason over the non-
textual forms of data(Tong et al. 2024; Verma et al. 2024a),
which requires further work within this layer of the frame-
work. Advances that ensure multimodal LLMs indeed model
all modalities reliably will ensure greater off-the-shelf capa-
bilities in the future iterations of these models.
Vertical-agnostic properties: As we consider applying
large AI models, the first set of problems are vertical-
agnostic properties that apply to most verticals and pave
the path for effective consideration of vertical-specific as-
pects. For instance, are multimodal LLMs robust to the
plethora of plausible and realistic variations in user-provided
inputs, given that it is unreasonable to assume users will
constrain their inputs to the margins of the training distri-
bution (Ramshetty, Verma, and Kumar 2023; Verma et al.
2022b; Nookala et al. 2023)? Will these models handle the
personally identifiable information (PII) already encoded
from its pre-training corpus (Carlini et al. 2021) and the

sensitive data provided by users while using it for itera-
tive refinement (e.g., from patients (Pan et al. 2024) or
students (Yang and Beil 2024))? Relatedly, can large AI
models provide interpretable predictions that foster trans-
parency (Stiglic et al. 2020)? Addressing these problems as
foundational steps will overcome bottlenecks across many
verticals and enable a more effective use of the remedial
techniques. Additionally, addressing these problems in the
proximity of the large AI models layer could lead to inte-
gration of the remedial techniques in the development of
upcoming large AI models; we elaborate on this in Sec-
tion . We now move on to situating vertical-specific innova-
tions, opportunities, and challenges within the framework,
starting with healthcare and then exploring education. We
chose to focus on healthcare and education verticals because
they represent high-stakes domains with distinct yet comple-
mentary challenges: both verticals focus on building user-
centered systems with healthcare demanding precision and
rigorous safety measures while education prioritizing en-
gagement and personalization to cater to diverse pedagog-
ical needs of the learner.

Vertical adaptation: (a) MLLMs for healthcare: One of
the well-explored clinical applications of multimodal deep
learning models, including the recent multimodal LLMs,
is as an assistant for radiologists. The models can help
clinicians make diagnoses via conversational-assistance as
well as writing medical reports (Johri et al. 2025; Zhang
et al. 2024). Even though off-the-shelf LLMs encode med-
ical knowledge (Singhal et al. 2023), they need to be ver-
tically adapted to acquire diagnostically useful information
from natural conversations with primary care providers. This
vertical adaptation involves curating the right data of di-
agnostic conversations, which would require close involve-
ment of domain-experts (Tu et al. 2024). Beyond curating
the right data, off-the-shelf LLMs do not demonstrate prop-
erties that are required to accurately model the data–for in-
stance, history-taking (Tanno et al. 2024; Tu et al. 2024).
In the context of radiology, this would involve equipping
the underlying multimodal LLMs with temporal modeling
capabilities (Bannur et al. 2023). To evaluate whether the
modeling approach is effective on the curated data, vertical-
agnostic evaluations may not suffice. For instance, Yu et al.
(2023) (Yu et al. 2023) demonstrate that generic ‘natural lan-
guage generation’ metrics are not effective in capturing clin-
ically pertinent differences between AI-generated radiology
reports and those written by experts, and propose meaning-
ful metrics to guide future research in this vertical. The eval-
uations uncovered that while both experts and AI systems
can make mistakes while generating radiology reports alone,
the instances of inaccuracies decrease when experts and AI
work in collaboration to fix the errors (Tanno et al. 2024).
Nonetheless, a crucial challenge remains unaddressed when
interfacing the AI systems with clinicians – the collaboration
loses effectiveness when the expert either overly relies on the
AI predictions (Seah et al. 2021; Rajpurkar et al. 2020) or is
excessively critical of them (Agarwal et al. 2023).

Vertical adaptation: (b) MLLMs for Education: Large
AI models, including multimodal LLMs, are already be-



Figure 1: Overview of the proposed framework for situating innovations, opportunities, and challenges in advancing vertical
systems with large AI models; read from bottom to top. Large models form the base for vertical systems. These models need
scaffolding to demonstrate properties such as robustness, interpretability, efficiency, and privacy before being useful as vertical-
specific systems. Vertical-specific adaptations are required to deliver value within specific verticals. This involves curating data,
designing or adapting modeling approaches, vertical-centric evaluations, and interfacing the model’s outputs with users. General
problems in designing interfaces and interactions between the system and users are designated as vertical-user intermediaries.
The dynamism between the framework layers is noteworthy (depicted by ↓ and ↑). Over time, vertical-agnostic properties,
especially those applicable to many vertical systems, could become ingrained properties in future models as development
strategies evolve. Similarly, modeling for vertical adaptation could become less prominent as large models become efficiently
adaptable, exemplified by the success of in-context learning with large language models. Finally, vertical-specific insights for
interfacing systems with users and general interfacing techniques influence each other over time.

ing used by students across the globe to assist with their
learning (Zhu, Zhang, and Wang 2024), demonstrating their
promise in tutoring. Even though their ad hoc capabilities
are noteworthy, Macina et al. (2023) (Macina et al. 2023)
note that their systematic impact on “tutoring has largely
remained unaffected”. A central challenge in this vertical
concerns curating data that captures diverse pedagogical
strategies, covering a broad range of topics, learner demo-
graphics, and instructional modes encountered in real class-
rooms (Jurenka et al. 2024). From a modeling perspective,
besides fine-tuning (which may prove to be an inefficient
strategy for adapting to different definitions of what consti-
tutes effective pedagogy), it is advantageous to allow learn-
ers to specify desired attributes across pedagogical dimen-
sions and have the model reflect them (Team et al. 2024).
The evaluation of such models should be grounded in learn-
ing science, which often prioritizes motivating and promot-
ing engagement from the learner, and not just “giving the
right answer”(Foster et al. 2023). It is also crucial that the in-
terfaces support learner-tutor interactions such that the con-

versations are grounded in what the student “sees”, which
is one of the core principles of student-centric pedagogy.

Vertical-user intermediaries: Even though there are
vertical-specific considerations involved in interfacing sys-
tems with users, some of these challenges are frequently en-
countered across many verticals. For instance, as we noted,
clinician-AI collaboration tends to become less useful when
the capabilities and limitations are not adequately under-
stood by the experts. Similar observations around ‘algorithm
aversion or appreciation’ exist across other verticals (Di-
etvorst, Simmons, and Massey 2015; Logg, Minson, and
Moore 2019; Qian and Wexler 2024). Given the broad nature
of the underlying challenge, it is effective to work on trust
calibration as a vertical-agnostic vertical-user intermediary.
E.g., introducing uncertainty expressions (“I’m not sure,
but...”) in AI-generated responses leads to decreased over-
reliance and calibrated trust among users (Kim et al. 2024)
– an insight that can benefit many verticals, including gen-
erative information retrieval, healthcare assistance, and ed-
ucational tutoring. Similarly, designing interfaces that cap-



Vertical-User Intermediaries

Trust calibration : How can AI systems effectively communicate their capabilities and limitations to users to prevent
issues of overreliance or unwarranted skepticism?
Feedback loops :How can real-time user feedback be systematically captured and integrated into iterative refinement
processes for large AI models?
Dynamic interfaces : How can interface designs dynamically accommodate users with varying cognitive engagement
preferences, optimizing usability for both high and low Need For Cognition (NFC) individuals?

Vertical Adaptation in Healthcare Vertical Adaptation in Education

Data : What methodologies can be used to curate special-
ized datasets of medical dialogues necessary for accurately
tuning multimodal models for clinical use?

Data : How should educational data be curated to reflect
diverse pedagogical strategies and learner demographics to
improve AI-assisted tutoring?

Modeling : How can AI models effectively incorporate
temporal patient history data to improve accuracy in clini-
cal diagnostics?

Modeling : What modeling techniques can efficiently adapt
AI systems to individual learner needs and preferred peda-
gogical strategies?

Evaluation : Which clinical standards and metrics most
effectively measure the quality and reliability of AI-
generated outputs in healthcare settings?

Evaluation : How can AI system evaluations accurately as-
sess their impact on learner motivation, engagement, and
educational outcomes beyond correctness of content?

Interfacing : How can AI systems best support collabora-
tion with clinicians?

Interfacing : How can AI tutoring systems effectively
ground responses within the immediate learning context
and visual perspective of the student?

Vertical-Agnostic Properties

Robustness : How robust are AI models to realistic & plausible variations in user inputs spanning multiple modalities?
Privacy : How effectively can AI models ensure the privacy & security of personal and sensitive data?

Interpretability : In what ways can AI models be made to provide interpretable predictions to improve transparency?

Multimodal Large Language Models

How can modalities beyond language (visual, audio, sensor data) be reliably processed with large AI models?

Table 1: Operationalizing the framework for adoption of large AI models in the healthcare and education verticals; read from
bottom to top. Each question is an example of existing/potential innovations, challenges, and opportunities in vertical adoption
of large artificial intelligence models (in this case, multimodal large language models).

ture real-time, in-situ, and implicit user feedback, will un-
lock iterative refinement of underlying systems across many
verticals(Shi et al. 2024). Furthermore, interfaces that dy-
namically adapt to deliver the optimal experience to a group
of users with diverse Need For Cognition levels (NFC; a
personality trait that considers users’ tendency to engage
with cognitive activities(Cacioppo and Petty 1982)) is an
opportunity that will benefit many verticals. More specifi-
cally, for decades, researchers have observed that users with
higher NFC levels benefit significantly from complex inter-
faces, while others struggle to adopt them(Carenini 2001) —
a pattern that spans many verticals and has continued with

recent generative artificial intelligence technologies (Toner-
Rodgers 2024; Buçinca, Malaya, and Gajos 2021).

Dynamism between layers of the framework
The framework is structured in layers to support modular-
ity in addressing innovations, opportunities, and challenges.
Yet these layers do not serve the purpose of rigidly demar-
cating the underlying problems. Instead, as we discuss in
this section, they exhibit extensive cross-layer interactions
and mutual influences—referred to here as “dynamism”.
This section provides concrete examples that (a) illustrate
this dynamism and (b) show how the dynamism can foster



distributed-yet-collaborative synergy in AI’s development.
Let us start with vertical-specific considerations influ-

encing vertical-agnostic properties. As practitioners and
researchers explore the applications of large models in dif-
ferent verticals, they highlight the successes as well as
shortcomings. Certain aspects such as lack of robustness,
poor handling of private data, and lack of efficient adapt-
ability are frequently encountered/identified across verticals
and make their way to being more effectively addressed
in a vertical-agnostic manner. When addressing these chal-
lenges in a vertical-agnostic manner, vertical-agnostic solu-
tions can influence the development of the next iterations
of large AI models. Matryoshka representations (Kusupati
et al. 2022) present a strong case study for this. In many
real-world search systems (e.g., patient records, legal re-
views, and educational video search), relevant items are of-
ten retrieved by computing similarity between neural repre-
sentations. At large scales—hundreds of millions of items—
this must be efficient. Kusupati et al. (2022) (Kusupati et al.
2022) introduced “Matryoshka doll” representations, where
14× smaller embeddings match the performance of full-
size ones for classification and retrieval. This innovation
supports flexible representation sizes, enabling efficient re-
trieval and classification in a vertical-agnostic manner, even
though the initial inadequacies were identified during many
vertical-specific adaptations. Although originally the effec-
tiveness of Matryoshka representations was demonstrated on
ImageNet-scale datasets, it was later adopted by OpenAI and
others to train large AI models (e.g., text-embedding-3)
on web-scale data (OpenAI 2024).

Akin to the dynamism between vertical-specific consid-
erations, vertical-agnostic properties, and large AI models,
certain challenges may also shift from interfacing-related
aspects within verticals to broader vertical-user inter-
mediaries. Consider AI hallucinations in high-stakes fields
like healthcare, where unreliable responses can lead to ad-
verse outcomes and erode trust, prompting research on cog-
nitive forcing interventions in medical AI-assisted decision-
making (Buçinca, Malaya, and Gajos 2021). With LLMs
now prevalent in many domains (e.g., web retrieval, law, ed-
ucation, and mental healthcare), hallucination has become
a key challenge. This has spurred work on vertical-user in-
termediaries, including quantifiable or language-based un-
certainty cues (Xiong et al. 2024; Kim et al. 2024) and ref-
erencing source documents for verifiable claims (Gao et al.
2023), with early evidence of reduced user over-reliance on
AI outputs (Bo, Wan, and Anderson 2024).

The dynamism between layers is inherently desirable
as it facilitates the distributed-yet-collaborative develop-
ment of AI systems. The large AI models are often devel-
oped in highly resource-rich environments, while the prac-
titioners and researchers who develop vertical-specific in-
sights that trickle down to the bottom layers of the frame-
work are often situated outside of these selective environ-
ments. Here, two points are worth noting: first, to deliver
benefits within a vertical using large AI models, it is crit-
ical to actively engage with domain experts who have cu-
rated specialized data, engineered novel methods, or de-
signed meaningful evaluations for those verticals. This en-

ables specialized insights that arose from vertical-specific
explorations, while simultaneously embedding them in more
general-purpose model architectures. Second, it is incor-
rect to assume that vertical-specific explorations merely pig-
gyback on advances in large AI models. Rather, vertical-
specific advances play a critical role in the development of
large AI models. When used carefully, these vertical-specific
insights can make general-purpose models more capable and
speed up the release of solutions for specific user needs.

Intended framework outcomes
Developing on the trends that illustrate the dynamism be-
tween layers of the framework and its collaborative-yet-
distributed nature, we discuss how the framework can aid
along the following axes: encouraging researchers to op-
timally situate or borrow innovations, discovering over-
looked opportunities, and engaging in a structured cross-
disciplinary dialogue. The actionable recommendations
were derived through an iterative process, where the authors
reflected on recurring pain points encountered across differ-
ent applications of large AI models and deliberated on steps
that could enable their effective integration.

Optimally situating and borrowing innovations
One of the key intended outcomes of the framework is to
help situate the innovations such that they have increased po-
tential for impact and also promote optimal use of resources.
An important aspect of this is to consider when vertical-
specific innovations, particularly on the modeling and in-
terfacing front, could have broader impact across many
verticals. For instance, studies across many verticals have
found that adapting LLMs on benign datasets for health-
care, education, and law compromises their safety — mak-
ing them more likely to respond to potentially harmful
prompts (Qi et al. 2024). Individual research teams across
verticals therefore go through additional steps to first quan-
tify the extent of compromise in safety upon fine-tuning and
then, if the extent is unacceptable, improve the compromised
safety of vertically-adapted LLMs (Niknazar et al. 2024;
De Freitas et al. 2024). However, as opposed to investigat-
ing and addressing the underlying issues independently in
many verticals, Peng et al. (2024) study the loss of safety in
adapted LLMs—across several LLMs and datasets—to pro-
pose a metric for safety in LLM adaptation by visualizing
its safety landscape (Peng et al. 2024). The metric could be
used across verticals to determine whether the LLM adapta-
tion has compromised safety and the extent to which reme-
dial strategies are required. This illustrates how addressing
challenges that are encountered across several verticals as a
vertical-agnostic properties could be more optimal in terms
of impact and resource allocation.

Similar examples exist in how vertical-specific interfac-
ing challenges could point to broadly applicable problems
that are optimally addressed as vertical-user intermediaries.
As a specific example, the tendency of LLM-based chat-
bots to neglect crucial aspects of user interactions as they
primarily focus on outcomes has been noted in many ver-
ticals, including their applications in therapeutic conver-
sations (Zhou et al. 2024), information seeking (Sharma,



Liao, and Xiao 2024), writing code (Bajpai et al. 2024),
or humanitarian frontline negotiations (Ma et al. 2024).
While vertical-specific strategies have been proposed (like
inducing Gricean maxims to structure code-related interac-
tions (Bajpai et al. 2024)), it is promising to assess whether
such strategies generalize across verticals as a vertical-
user intermediary. If such a challenge can be addressed in
a vertical-agnostic manner, it could enable more effective
vertical-user interactions across many verticals. It is worth
emphasizing that situating innovations as vertical-agnostic
properties (whether in modeling or interfacing) does not aim
to discourage vertical-specific innovation as it is the latter
that provides insights into what could work (snowballing
effect). The objective here is to encourage researchers and
practitioners to consider the potential impact of their in-
novation and aid others in adopting it to establish vertical-
agnostic generalization.

Conversely, optimality also requires that researchers and
practitioners adopt vertical-agnostic strategies when they
are effective in their specific verticals. For instance, while
many vertical-specific works note that prompt engineering
is often ad hoc, solutions like DSPy (Khattab et al. 2023)
provide a structured, vertical-agnostic approach to optimiz-
ing prompts, thereby addressing common challenges across
multiple domains and saving resources.

Uncovering overlooked opportunities
Guided by the philosophy of “turning frequent failures into
signals”, the framework can also help uncover overlooked
opportunities. A compelling example exists in the develop-
ment and adoption of large language models for languages
in South Asia. Individual teams have noted the limitations
of LLMs trained on predominantly English data when they
are used in non-English languages for applications in differ-
ent verticals (Jin et al. 2024; Kumar et al. 2024; Verma et al.
2022a). Such LLMs also lack the socio-cultural awareness
to adapt to the needs of users in South Asian regions (Pawar
et al. 2024). These failures have highlighted an opportu-
nity for collaborative and participatory research to develop
new LLMs for South Asian languages, such as Bharat-
GPT (BharatGPT 2025) and SeaLLMs (Nguyen et al. 2023).
Since their deployment, these models have been adopted
across many verticals by businesses, governments, and non-
profits (CoRover AI). By identifying the pattern among the
failures in vertical adoption and addressing the major issues
at the large AI model-layer of the framework, the vertical-
agnostic and vertical-specific layers can build on top of ad-
vanced off-the-shelf capabilities of the newer models. Such
coordinated and targeted efforts also ensure that the bur-
den of developing large AI models that are effective in
specific verticals does not fall on individual teams as the
process is restrictively resource intensive and carries envi-
ronmental costs (Strubell, Ganesh, and McCallum 2020).

Another bottleneck that exists in the vertical adoption
of large models is careful handling of sensitive data – in-
cluding health data (Pan et al. 2024), student data (Yang
and Beil 2024), and proprietary workflows (Tang et al.
2024). Current large models readily allow adaptation via in-
context learning or custom system instructions, which pose

the risk of exposing sensitive data via jailbreak attacks (Liu
et al. 2023). However, Rajendran et al. (2024) (Rajendran
et al. 2024) argue that cross-cohort cross-category integra-
tion — “the process of combining information from diverse
datasets distributed across distinct, secure sites” — is im-
portant for adopting large models in verticals like healthcare.
This provides an opportunity to develop large AI mod-
els or vertical-agnostic properties that facilitate adapt-
ability while securely handling data without compromis-
ing on key performance metrics. Training large models for
adaptability via approaches like meta-learning (Verma et al.
2024b) or providing secure adaptability as a service (Tang
et al. 2024) are some opportunities to accelerate vertical
adoption of large AI models.

Beyond modeling-related opportunities, there are signifi-
cant opportunities on the human-AI interaction and in-
terface design fronts, both in vertical-specific as well
vertical-agnostic settings. The large-scale user-adoption of
AI is still relatively nascent (Houter 2024; Abril 2024) and
while modeling-related problems (both vertical-specific and
vertical-agnostic) are being actively addressed by newer it-
erations of the large models, the interfacing of these capa-
bilities with the intended users is still a major challenge.
For instance, beyond chatbot-like interfaces, recent studies
show structured media such as notebooks provide a flexi-
ble interface for incrementally creating and consuming in-
formation, which is also effective for clinically mandated
documentation standards (Cheng et al. 2024; Wang, Dai,
and Edwards 2022; Adler-Milstein et al. 2022). Addition-
ally, micro-prompting and using interactive graphical ob-
jects (an interaction paradigm that can be applied to many
verticals) has shown to enhance user satisfaction in interac-
tions between human and AI systems (Suh et al. 2023; Jiang
et al. 2023; Butler et al. 2024).

Communicating cross-disciplinary challenges
Achieving real-world impact with large AI models de-
mands coordinated expertise spanning AI architectures,
high-performance hardware systems, data curation, do-
main knowledge (including regulatory considerations), and
human-computer interaction. Our framework offers a
shared language for communicating these varied techni-
cal and societal needs. It helps each group pinpoint bottle-
necks and future directions across the layers. For instance,
researchers who develop a modeling or interface solution
in one vertical can highlight its potential generalizability,
bringing it to the attention of others working on similar
challenges in different verticals. Relatedly, researchers who
develop vertical-agnostic solutions that address challenges
across many verticals should persuade their adoption across
verticals. If these solutions prove effective repeatedly across
many verticals, large-model developers should incorporate
them into next-generation models and architectures so they
become standard off-the-shelf capabilities.

By helping researchers situate their efforts within a com-
mon structure, the framework promotes streamlined collab-
oration among AI developers, vertical experts, and human-
computer interaction researchers, ensuring that large models
evolve into useful and trustworthy tools across a wide range



of real-world applications. The framework also helps avoid
the pitfalls of viewing large AI models as self-sufficient so-
lutions (Blodgett and Madaio 2021; Bommasani et al. 2021).
At the same time, it encourages vertical-specific teams to
articulate their domain’s unique requirements and al-
lows large-model developers to spot recurring problems
that merit general-purpose fixes.

Discussion
Positioning with respect to other frameworks: As men-
tioned earlier, most existing frameworks focus on specific
facets of adopting large AI models into verticals. For in-
stance, Ehsan et al. (2023) chart the sociotechnical gap in
explainable artificial intelligence, presenting a framework
that conceptualizes the gap between model outputs and hu-
man interpretability needs. Similarly, Goldstein and Sas-
try (2024) present a framework for estimating the malicious
use of systems built with advanced AI models. In the do-
main of conversational search, Azzopardi et al. (2024) de-
velop a conceptual model of agent–user interaction, map-
ping out the dialogue acts and decision points that drive
information-seeking conversations. Moving beyond facets
like explainability and interfacing, at a systems level, Yan
et al. (2024) provide a list of engineering-focused best-
practices for LLM-based applications, emphasizing compo-
nents like rigorous evaluation, retrieval-augmented genera-
tion, fine-tuning, and guardrails to integrate large models
into products. In the same vein, institutions have also put
forth adoption guides: a U.S. Department of Energy report
( 2022) underscores the need for robust data pipelines, high-
performance computing, and reproducible model infrastruc-
tures to accelerate AI uptake in critical domains. Likewise,
the NIST AI Risk Management Framework ( 2023) focuses
on processes for identifying and mitigating AI system risks,
defining functions such as Govern, Map, Measure, and Man-
age to ensure trustworthy development and deployment. In-
dustry frameworks like IBM’s “AI Ladder” ( 2025) simi-
larly prescribe sequential steps (e.g., modernize, collect, or-
ganize, analyze, infuse) to guide organizations in scaling AI
from data preparation to integration into workflows.

Each of these works offers valuable conceptual frame-
works, but notably each isolates a specific sub-problem or
component of AI adoption into verticals — be it explain-
ability, user interfacing, engineering best practices, infras-
tructure needs, or product management cycles — rather
than providing a unified framework. In contrast, our lay-
ered framework offers a holistic and modular structure
that ties these aspects together. It spans from the core
large-model layer, through vertical-agnostic properties and
vertical-specific adaptation, up to user-facing intermedi-
aries, explicitly situating innovations and challenges in con-
text. Within this integrated view, we present several perspec-
tives that could enable an ecosystem of efficient and effec-
tive vertical adoption of AI models — e.g., how improve-
ments in one layer (for example, a robustness technique at
the model layer or a novel interfacing paradigm at the user-
intermediary layer) can propagate benefits across other lay-
ers and across domains. Cross-cutting concerns, such as data
privacy, fairness, or trust, are better addressed at right layers

such that they are not repeatedly “solved” in silos.
By providing a shared vocabulary and clear abstraction

boundaries, the framework enables researchers and prac-
titioners to communicate and build upon each other’s ad-
vances. Our framework not only advocates to reduce redun-
dant effort (teams in different verticals can reuse solutions or
insights from analogous layers) but also establishes a basis
for diving deeper into aspect-specific frameworks as needed.
For instance, an explainability framework (as in the frame-
work by Ehsan et al.) slots naturally into our vertical-user
intermediary layer, and a conversational interaction model
(as in Azzopardi et al.’s framework) can be viewed as a
vertical-specific interface component. In essence, the lay-
ered approach “situates” specialized innovations within a
bigger picture. All of these qualities address the unmet need
for an integrated conceptual models for AI adoption: one
that modularly encompasses the full pipeline of transform-
ing a large AI model into a domain-specific, user-facing sys-
tem, and thereby complements prior frameworks.

Adaptability with the changing interaction paradigm:
While our framework primarily focuses on human-AI in-
teractions, it is inherently adaptable to emerging ways of
interactions with large models. For instance, Model Con-
text Protocol (MCP) is an open standard recently designed
to facilitate interactions between large models and ex-
ternal tools (Anthropic 2024). As agentic-AI workflows
gain prominence, understanding signals and feedback from
model-tool interactions becomes crucial for further improve-
ments. However, such signals could differ from traditional
measures commonly used in human-AI interaction paradigm
(such as user trust) and may include newer measures such as
agentic-coordination capabilities, and tool-usage efficiency.
Our framework provides the agility to incorporate such
changes. For example, in this case, an additional layer par-
allel to the vertical-user intermediary layer could be intro-
duced which specifically adapted to analyze multi-agent sys-
tem interactions.

Limitations and future directions: Our framework, while
providing a valuable starting point for situating innovations,
opportunities and challenges in vertical adoption of large AI
models, has multiple limitations. The framework centers on
end-users and their direct interactions with AI systems, leav-
ing out broader social, institutional, and policy contexts. In
the context of healthcare and well-being, De Choudhury et
al. (2023) (De Choudhury, Pendse, and Kumar 2023) adopt
a Social Ecological Model to explore how AI can influence
not just individuals but also caregiving institutions and so-
ciety at large. While these wider sociotechnical considera-
tions are crucial for fully understanding AI’s impact — es-
pecially in sensitive areas like mental health and telehealth
— they fall beyond the scope of our current user-focused
framework. Future work could integrate our framework with
broader ecological models to capture the dynamism across
multiple stakeholders and social layers, thereby offering a
more holistic view of how AI systems both shape and are
shaped by larger sociotechnical contexts. Furthermore, since
our framework aims to cover the development pipeline that
transforms large AI models into vertical systems, it does



not dive deep into individual challenges. For instance, prior
studies have developed frameworks around specific aspects
like robustness, interpretability, explainability, and human-
AI interaction and communication (Li et al. 2023; Fra-
giadakis et al. 2024; Bansal et al. 2024). Future work could
involve a large-scale study that balances high-level coverage
of the entire pipeline with deeper dives into each sub-issue.
This would require a multi-disciplinary collaboration of ex-
perts in those sub-issues, ensuring that the final systems re-
main grounded in real user needs while thoroughly address-
ing the nuanced challenges in each aspect of deployment.

Conclusion
Our framework addresses the crucial gap between the re-
markable capabilities of large AI models and the complex,
context-specific needs that arise in real-world verticals. By
modularizing the development pipeline into four layers —
large AI models, vertical-agnostic properties, vertical adap-
tation, and vertical-user intermediaries, our framework of-
fers a structured way to identify, situate, and address the
challenges encountered when building practical AI systems.
We also highlighted the dynamic interplay among these lay-
ers: insights from domain-specific challenges loop back into
model-level improvements, and widespread interface chal-
lenges become generalizable solutions for human-AI in-
teractions. To that end, the framework provides actionable
guidance for effectively placing innovations, spotting oppor-
tunities that might otherwise be overlooked, and coordinat-
ing across disciplines to precipitate vertical-specific utility.

Large AI models hold tremendous promise but are not
plug-and-play solutions that immediately translate into user-
facing impact. Our work underscores the healthy dynamism
needed to meaningfully apply these models: it calls on AI
developers to incorporate feedback from vertical deploy-
ments (instead of merely chasing benchmarks), and it urges
vertical-focused researchers to recognize where their inno-
vations could broaden into vertical-agnostic improvements.
Ultimately, this coordinated and interdisciplinary effort will
ensure that large AI models truly deliver on users’ needs.
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